Classification for Imbalanced and Overlapping Classes Using Outlier Detection and Sampling Techniques

نویسندگان

  • Zeping Yang
  • Daqi Gao
چکیده

In many real world applications, the example data among different pattern classes are imbalanced and overlapping, which hinder the classification performance of many learning algorithms. In this paper, data cleaning techniques based BNF (the borderline noise factor) is proposed to remove the borderline noise and three under-sampling methods are studied to select the representative majority class examples and remove the distant samples which are useless to form the decision boundary. BNF shows the degree of being a borderline noise and the outlier detection algorithm is improved to clean the whole dataset. Here G-mean (Geometric Mean) is used to define the threshold, which can improve the classification accuracy of minority classes while achieving better performance on the overall classification. The experimental results demonstrate the effectiveness of sampling method with data cleaning techniques based on BNF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying imbalanced data sets using similarity based hierarchical decomposition

Classification of data is difficult if the data is imbalanced and classes are overlapping. In recent years, more research has started to focus on classification of imbalanced data since real world data is often skewed. Traditional methods are more successful with classifying the class that has the most samples (majority class) compared to the other classes (minority classes). For the classifica...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Intrusion Detection in IOT based Networks Using Double Discriminant Analysis

Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...

متن کامل

Co-Multistage of Multiple Classifiers for Imbalanced Multiclass Learning

In this work, we propose two stochastic architectural models (CMC and CMC-M ) with two layers of classifiers applicable to datasets with one and multiple skewed classes. This distinction becomes important when the datasets have a large number of classes. Therefore, we present a novel solution to imbalanced multiclass learning with several skewed majority classes, which improves minority classes...

متن کامل

Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering

 Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013